DISABILITY EQUITY IN
MATHEMATICS EDUCATION

ACCESSIBILITY, RE-MEDIATION, AND
COMPENSATION

KATIE LEWIS
UNIVERSITY OF WASHINGTON
MICHIGAN STATE UNIVERSITY
JANUARY 25, 2023
“there's two that are shaded and four that are left”

Mathematics Disabilities / Dyscalculia
persistent and pervasive learning difficulties
specific to mathematics
Mathematical Disabilities / Dyscalculia

- Neurological difference in how students process quantity
 - (Butterworth, 2010; Piazza et al., 2010)

- Similar to dyslexia – but for numerical information

- About 5-8% of students have a math learning disability (Shalev, 2007)

- Leads to significant difficulty with mathematics and errors.
Prior Research On Math Dis.

- Behaviorist / Cognitive
- Cognitive *deficits*
- Problem located *within the individual*
- Remediations are about “remedying” (fixing) the student
- Outcome of Math disability —> Low achievement
- Low achievement is used as a proxy for Math Disability (Lewis & Fisher, 2016)

Issues

- Deficit model is problematic
- Pathologizes difference
- *Over-classification* (Hanich, Jordan, Kaplan & Dick, 2001)
Anti-Deficit Perspective

• My positionality - White, queer, cisgendered woman, native English speaker, upper-middle class, with dyslexia

1. Disability Studies
2. Sociocultural perspectives - Vygotsky
Disability Studies

• Reject the deficit view of disability (medical model - focused on “curing”)
• Social model
 • Acknowledges biological differences
 • Understands physical, sensory, and neurological differences as natural and desirable (Kafer, 2013)
 • Individuals are disabled not by biological differences, but by environments and societies that are not designed for them or don’t value those differences (Barnes, 2003).
• Disabled by contexts not by biological differences
Vygotskian Theoretical Approach

- Typical Development (Vygotsky, 1978)
- Biological and socio-cultural lines of development intersect
- Human activity is mediated through tools/signs (language, numerals)
- These tools/signs have been developed over the course of human history and are optimized for individuals with “typical” development
• For individuals with disability - Mediation tools are often **incompatible** with a individual’s natural biological development —> **Inaccessibility**
 • Spoken language inaccessible for individuals who are Deaf

• Inaccessibility is addressed through creation of accessible meditational tools —> **Re-mediations**
 • Signed languages for the Deaf (e.g., ASL)

• If no accessible meditational tool is available - individuals with disabilities will often recruit alternative resources to accomplish same goals —> **Compensation**
 • Blind folks develop echolocation skills (Thaler, Arnott, & Goodale, 2011)
An alternative Approach

<table>
<thead>
<tr>
<th>Prior Research On Math Dis.</th>
<th>My Alternative Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behaviorist</td>
<td>Anti-deficit - (DS / Vygotsky)</td>
</tr>
<tr>
<td>Cognitive deficits</td>
<td>Cognitive difference</td>
</tr>
<tr>
<td>Problem located within the individual</td>
<td>Problem is an issue of access (external)</td>
</tr>
<tr>
<td>Remediations are about “remedying” (fixing) the student</td>
<td>Remediations -“re-mediating” fixing tools to provide access</td>
</tr>
<tr>
<td>Result of Math Disability —> Low achievement (failure)</td>
<td>Result of Math disability —> Compensation</td>
</tr>
</tbody>
</table>
Overview of Talk

Access (Lewis, 2014)

Re-mediation (Lewis, 2017)

Compensation (Lewis & Lynn, 2018)

Access (Lewis et al., 2020; 2022)
Case Study #1 - Lisa

• Recruited “exceptional cases” - adults with significant difficulties with elementary math content (AND students who would meet criteria in other studies of math disability)

(Lewis, 2014)
Identification Case Study

Student with math disabilities

Students with possible math dis.
n=11

Fifth grade comparison students
n=5

Tutoring Sessions

Test scores student interview

Pre 1 2 3 4 Post

Access
Students with possible math dis.
n=11

Tutoring Sessions

All benefited from the tutoring sessions.
5th grade students:
• Average gain 15%
• Posttest scores above 60%
Identification Case Study

Student with math disabilities

Students with possible math dis. n=11

Classification
- Low math achievement
- No confounding factors
- Lack of response to instruction

Tutoring Sessions

| test scores | student interview | Pre | 1 | 2 | 3 | 4 | Post |

All benefited from the tutoring sessions.
5th grade students:
- Average gain 15%
- Posttest scores above 60%
Identification Case Study

Student with math disabilities

Students with possible math dis. n=11

Classification
- Low math achievement
- No confounding factors
- Lack of response to instruction

Tutoring Sessions
- Pre
- Post 1
- Post 2
- Post 3
- Post 4

All benefited from the tutoring sessions.
5th grade students:
- Average gain 15%
- Posttest scores above 60%
Identification Case Study
Student with math disabilities

Students with possible math dis.
n=11

Classification
• Low math achievement
• No confounding factors
• Lack of response to instruction

Test scores
Student interview

Tutoring Sessions
Pre 1 2 3 4 Post

All benefited from the tutoring sessions.
5th grade students:
• Average gain 15%
• Posttest scores above 60%
Identification Case Study
Student with math disabilities

Students with possible math dis.
n=11

Classification
- Low math achievement
- No confounding factors
- Lack of response to instruction

Tutoring Sessions
Pre 1 2 3 4 Post

Change?

All benefited from the tutoring sessions.
5th grade students:
- Average gain 15%
- Posttest scores above 60%
Identification Case Study

Student with math disabilities

Classification
- Low math achievement
- No confounding factors
- Lack of response to instruction

Students with possible math dis. n=11

Tutoring Sessions
- Pre
- 1
- 2
- 3
- 4
- Post

Change?

All benefited from the tutoring sessions.
5th grade students:
- Average gain 15%
- Posttest scores above 60%

Lack of response:
- Gain less than 10%
- Posttest scores below 60%

Access
Identification Case Study

Student with math disabilities

Students with possible math dis.

n=11

Classification

- Low math achievement
- No confounding factors
- Lack of response to instruction

2 students with a math disability
(today I will focus on one “Lisa”)

Analysis of Access

- Detailed diagnostic analysis of videotaped tutoring sessions

Tutoring Sessions

| Pre | 1 | 2 | 3 | 4 | Post |

All benefited from the tutoring sessions.
Lisa met Math Disability Criteria

White, upper-middle class, native English speaker Community college student.

- Low math achievement
 Placed in a arithmetic class - failed class

- No confounding factors
 No attention, behavior, anxiety or reading issues.

- Lack of response to instruction
 No gain from pretest to posttest.
Why did the student not benefit from the tutoring protocol?

- **Goals of analysis:**
 - Accountable to the whole data corpus
 - Identify consequential aspects of the student’s difficulty (inaccessibility)
 - Inaccessibility appears in an unconventional use/understanding of tools
 - Unconventional understandings
- **Qualitative data analysis**
 - Detailed microgenetic analysis (Schoenfeld, et al., 1997)
 - Analytic categories *emerge* from the data
Analytic Methods

Video Data

Transcript

Problem Instances

Candidate

Unconventional Understandings

Question

Answer
Analytic Methods

Problem Instances

- Correctness
- Evidence of unconventional understandings

Candidate Unconventional Understandings

Video Data

Transcript

Transcript

- If you want to close your eyes and imagine the fraction one-half, what would you think of?
- Student: 1/2
- Teacher: Can you sort of draw or write what you are thinking of?
- Student: Wait, no, it?
- Teacher: I'd love you to. You can also just describe it, whatever works for you.
- Student: Draw a circle divided into 2?
- Teacher: Is there any other way to draw or write it?

Candidate Unconventional Understandings
Analytic Methods

<table>
<thead>
<tr>
<th>Video Data</th>
<th>Transcript</th>
<th>Problem Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Candidate Unconventional Understandings

- **Correct?**: Yes
- **Unconventional Understandings**:
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
Analytic Methods

Video Data

Transcript

Problem Instances

Candidate Unconventional Understandings

All transcript accounted for in coding system
Lisa’s Taking Understanding

Unconventional focus on the fractional complement

\[
\begin{align*}
\text{draw} & \quad \frac{3}{4} \\
\text{“taken”} & \quad \frac{3}{4} \\
\text{“left”} & \quad = \frac{3}{4}
\end{align*}
\]
Katie: Ok, so now, how do we think about the relationship of this to this (point to each area model)? Because we want to basically take this (pointing to 3/4 area model) amount away from here (pointing to 7/8 area model).

Lisa: If I were to switch this (gestures horizontal partition line over 3/4) Like that

Katie: Ok.

Lisa: it would be 2....

Katie: So let's cut it in half like that.

Lisa: Can I use this? (divides shape) there would be two left? Or, two out of... Two-sixths left (writes 2/6)? No. I'm not sure. (scribbles out 2/6)
Lisa attended to the fractional complement across various representations (mediational tools).
Unconventional Understanding
Issues of Access

Fractional Complement

\[\frac{3}{4} = \frac{1}{4} \]

- Representations of fractions (like area models) do not serve same purpose for Lisa. (unconventional understanding)

- Rather than representing quantity - they seem to represent action. (issue of access)
82% of all incorrect answers associated with unconventional understandings
Lisa’s Understanding

Tutoring Sessions

Pre 1 2 3 4 Post

(Lewis, 2014)

- Standard representations were at least partially inaccessible.

- Lisa’s unconventional “Taking” understanding was not compatible with canonical usage of this mediational tool.
• **Standard representations** were at least partially inaccessible.

• Lisa’s unconventional “Taking” understanding was not compatible with canonical usage of this mediational tool.

- Build upon her “taking” understanding
- Design a re-mediation which enables her “taking” understanding to be a productive
- Connect to the canonical mathematical usage of area models
Scale Re-mediation

Allow shaded to be “taken”

Refocus on fractional quantity
A year later Does Lisa still rely on her Taking Understanding?

- Listen for:
 - Lisa referring to the shaded region as an amount that has “gone away”
 - The non-shaded pieces as the amount “left”

![Image of Lisa drawing and shaded regions]
Katie: Do these pictures help you think about that (referring to assertion that ½ is larger than 7/12)?
Lisa: Yeah.
Katie: And how, by looking at these pictures. Can you explain that one-half is bigger than seven-twelfths? Like are things. Are there things that you can point to about it?
Lisa: Here, let me, let me do it this way. (draws another picture of 7/12 below) Ok, so this is one half. It's like the same bread or whatever.
Katie: Mm hmm.
Lisa: Um, someone would want to opt for a half of the bread or whatever than 7/12 the bread, because at the end of the day, all of this would go away, leaving one, two, three, four or five (pointing at the unshaded pieces) pieces left. That are small, because it's been sectioned off 12 times. whereas the other person would want half of the entire loaf.
Katie: Okay. Okay. So in the comparison, you're sort of comparing this big piece to those five pieces there?
Lisa: Yes.
Katie: Okay.
Lisa’s taking understanding

“leaving 1, 2, 3, 4, 5 pieces left”

“all of these would go away”
Overview of Re-mediation

Session 1
Correctness
Taking

Pretest
Introduction of the scale model

Session 2
Correctness
Taking

Session 3
Correctness
Taking

Session 4
Correctness
Taking

Session 5
Correctness
Taking

Posttest

Key
Correctness
Correct answer
Unanswered/Tutor Guided
Incorrect answer
N/A - no question posed/answered

Taking Discourse
Answer characteristic of "taking" discursive routine
Answer not characteristic of "taking" discursive routine
Effectiveness of Remediation

Before Remediation

“pieces taken” 1

“pieces left” 3

After Remediation

“pieces there” 2

“pieces weighed” 3

“pieces not there”
Posttest
Compare 1/2 and 7/12

• In this clip
 • Lisa had decided that 1/2 was larger than 7/12 and decides to draw them.

Listen for:
 • Her focus on the size of the pieces.
 • When I ask her to think in terms of the scale how she shifts her thinking
Lisa: Yeah. I'm still gonna say one half is probably larger. Okay. Um, these are smaller fractions of a whole. So each piece is smaller. Et cetera.

… (student attempts and is not sure how to order 9/10) …

Katie: And does thinking of the scale at all help you sort of decide which of these two (pointing to 7/12 and ½) is bigger?

Katie: Okay. So if these were pictures of the scale?

Lisa: I guess if we were looking at the scale, this (pointing at 7/12 area model) would be heavier.

Katie: Okay.

Lisa: 7/12 would be heavier. Yeah. It's hard to say for sure. Like, I'm not certain about any of this, but I guess if I do, like sit there and visualize it, like the seven pieces, although they're... They're thinner, I feel like there would be more of them that's making it heavier.
What is the mathematical shift?

- She did initially believe that $1/2$ was larger than $7/12$
- **BUT...**
 - She was not comparing the fractions based on the amount “left”
 - When asked to think about the scale she revised her answer
 - She coordinated both the meaning of the numerator and denominator
Lisa’s Case

• Lisa had unconventional understanding of standard meditational tools

• Standard meditational tools were at least partially inaccessible for Lisa

• Lisa was able to achieve greater access through alternative meditational tools (re-mediation)
Case #2 - Melissa

“Melissa” - 31 year old, half Black half White, community college student, history of math difficulties

(19th percentile on Woodcock Johnson)
Design Based Research Approach

• Design Microcycles (Gravemeijer & Cobb, 2006)
Design Based Research Approach

- Design Microcycles (Gravemeijer & Cobb, 2006)

Retrospective Analysis

- 19 sessions focused on integer operations (Lewis et al, 2020) and solving for unknowns (Lewis et al, 2022)
Integers

8 - 2 = -6

Describe -4
Describe 5

-4 is not an object
5 is not an object
Quantities are understood as processes not objects

Represent quantities with manipulatives

Investigate how she conceptualizes quantity

-4 is just a negative of something. A negative of a, uh, it has a variable attached to it. It's a decrease. That's all it is.

If there was another number attached to it, then you can see if it's an increase or a decrease of something.
Algebra
(Solving for x)

Think of x as 1
Symbolic notation (x) may be inaccessible

Ask student to physically represent unknowns as container with a value contained within
Melissa had issues of access related to her understanding of **quantity** and **notation** for both integers and algebra.

- Both re-remediations involved a physical representation of quantities
- Both required translation of inaccessible notation
- Design-based research re-remediations enabled us to identify issues of access and design alternative meditational tools.
- Reorientation to the tools was effective.
Case #3 - Dylan Lynn

Compensation

(Lewis & Lynn, 2018)
Solve the problem:

\[8 \times 3 = \]

- 10.11 seconds to solve
- Process

\[8 + 8 = 16 + 8 = \]
\[16 + 4 = 20 \rightarrow 8 - 4 = 4 \]
\[20 + 4 = 24 \]

\[8 \times 3 = 24 \]
“if I have a math learning disability then the accommodation is to not take math.”
Revisiting theoretical Framing

- Disability Studies (moving from social model to political model)
 - Traditional research on individuals with disabilities is oppressive.
 - “Researchers have benefitted by taking the experience of disability, rendering a faithful account of it and then moving on to better things while the disabled subjects remain in exactly the same social situation they did before the research began” (Oliver, 1992, p. 109).

Compensation
Revisiting theoretical Framing

- Inverts the power dynamic (Mercer, 2004; Oliver, 1992)
- Researchers place their knowledge at the disposal of individuals with disabilities (Barton, 2006).
- Dylan = expert and Katie = inquirer (see Knox, Mok, & Parmenter, 2000)
- Individuals with disability decide
 - Agenda
 - Methodology
 - Interpretation
 - Final product
Dylan’s Agenda

• Document and share Dylan’s strategies
• “I’m doing it in the hopes that having this kind of knowledge can help younger people, especially young kids in particular, with being able to pursue higher-level mathematics, and not facing the difficulties I did.”
Methodology

- Videotaped conversations with Katie and Dylan
- Work through agenda focusing on Dylan’s difficulties and ways of compensating for various mathematical topics
- At the end of each session we planned agenda for next session.
- Katie wrote up notes, Dylan reviewed and
INTERPRETATION – ANALYSIS

• Reviewed video and transcripts of sessions to identify categories.
• Refined these categories drawing extensively on Dylan’s expertise and interpretation.
Paper Organization

Number sense (aid)

- How DL rotates
- Dictionary

Symbol consistency

- Disambiguate/clarify
 - Paper, pens, physical layout
 - Symbols
 - Consistent notation
 - Writing every step

Notation

- Data, symbol abuse
 - Truth
 - Writing

- Using math graph paper

Example

Solving a problem vs talking about solving

- Translate notation before solving
- Getting a problem into familiar form

Notation/Presentation of Math

- Visual spatial org
- Rewriting in words
 - Rewriting for consistency
 - Consistent process
 - Representational issues

Abstract/Number sense (what a value means)

- Language
 - Alphabetic
 - Doubles
 - Applied context
Compensation

- Our work tries to capture Dylan’s compensatory strategies
- Compensation = deliberate and intentional (re)action to inaccessible context in order to gain access.
 - (difficulties→ access issues → compensation)

- Two kinds of rewriting
 - Rewriting to in words
 - Rewriting to remove ambiguity
#1 - Rewriting in Words

- Difficulty remembering numerical information and “reading” mathematical notation
- “Like sounding out the math…”

3 + 2 =
Three plus two is ____?

\[P(A|B) \]
Probability of event A happening, given event B has happened
Dylan: I started thinking about the word rather than the symbol. Because the word like T H R E E has much more meaning to me than that too little backwards C's laying on top of each other.
Dylan: Something like this is much shorter than me for me now, but in my higher division math courses, I will actually still write these things out because you know,

Katie: like the probability?

Dylan: Yeah, this is so incredibly short, but it actually translates to the probability of event ha--event A happening given event B has happened. I actually have to like physically write that every time I do one of these.
2 - Rewriting in Words

- From notes:

\[n \cdot P \left[\bar{x} - 1.96 \left(\frac{\sigma}{\sqrt{n}} \right) \leq \mu \leq \bar{x} + 1.96 \left(\frac{\sigma}{\sqrt{n}} \right) \right] \approx 0.95 \]

\[\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \text{ is the standard error of } \bar{x} \rightarrow SE \]

There is a 95% chance the unknown \(\mu \) is within this range.

How do you compute the mean of a random variable that occurs over and over again?

\[\mu \text{ is the expected value or mean of } X \]

\[X = v_1, v_2, \ldots \text{ probability } p_1, p_2, \ldots \]

\[E[X] = \sum_{j=1}^{\infty} v_j \cdot P(X = v_j) \]
#2 - Rewriting to remove ambiguity

- Difficulty with symbols that look the same

- Difficulty with symbols that can mean different things
 - $3 \times 5 = $ and $3 \times + 9 = 27$
SIMILARITY CREATED
ACCESSIBILITY ISSUES
#2 Rewriting to Remove Ambiguity

Representational ambiguity

Rewritten Problem

- “Because I have taken algebra and I know that x can in fact be a variable and not necessarily multiplication... I always use parentheses now for multiplication.”

Rewritten Problem
Benefits of rewriting

- Enables association of the meaning with the notation
- Enables translation into a known form
- Access to the mathematics!
Demands of Rewriting

- Time consuming

\[r - (-7) = 14 \]
\[r + 7 = 14 \]
\[x + 7 = 14 \]
\[x = 14 - 7 \]
\[x = 7 \]
Demands of Rewriting

- Time consuming
- Need to integrate new symbols into “dictionary”

Compensation
Compensation

- It is possible to compensate even if the individual experiences fundamental issues with processing symbols.
- Strategies that Dylan shared we have used in our DBR work with other students (e.g., Melissa’s notational issues were addressed by rewriting in words $8-2=$ or $12=\text{x}+5$)
Emancipatory Work

• Raises questions about power dynamics in research
• Who is deciding the agenda, methodology, interpretation, final product?
• Who gets to author the participants’ stories?
• Who benefits?
Anti-Deficit of Math Disabilities

- Expands the ways in which we can approach the study of MLDs
- Not just quantifying deficits, but attempting to capture differences
- Using the understanding of difference (and issues of access) to design alternative re-mediations (to provide access)
- Demonstrating how it is possible to compensate, even if the compensations require more time and effort
- Emancipatory work - how can our work be in service to our participants?
Thank you

• Participants - Lisa, Melissa, and Dylan Lynn (co-researcher)
• Co-authors - Dylan Lynn, Gwen Sweeney, Grace Thompson, Rebecca Adler, Kawla Alhamad
• Funding for this work
 • The Spencer Foundation Dissertation Fellowship
 • National Academy of Education and Spencer Postdoctoral Award
 • University of Washington - Royalty Research Fund Award
 • National Science Foundation under grant No. ESI-0119732, and
 • The Institute of Education Sciences under grant R305B090026